Законы отражения света и история их открытия

Закон отражения света был открыт в результате наблюдений и экспериментов. Конечно, это можно вывести теоретически, но все принципы, которые используются сейчас, определены и обоснованы на практике. Знание основных характеристик этого явления помогает при планировании освещения и выборе оборудования. Этот принцип работает и в других областях: радиоволны, рентгеновские лучи и т.д. Ведут себя точно так же при отражении.

Что такое отражение света и его разновидности, механизм

Закон формулируется следующим образом: падающий и отраженный лучи лежат в одной плоскости, имеющей перпендикуляр к отражающей поверхности, выступающей из точки падения. Угол падения равен углу отражения.

По сути, отражение — это физический процесс, в котором луч, частицы или излучение взаимодействуют с плоскостью. Направление волн меняется на границе двух сред, так как они обладают разными свойствами. Отраженный свет всегда возвращается в окружающую среду, откуда он исходит. Очень часто при отражении также наблюдается явление преломления волн.

Законы отражения света и история их открытия

Это схематическое объяснение закона отражения света.

Зеркальное отражение

В этом случае существует четкая взаимосвязь между отраженными и падающими лучами, это главная особенность данной разновидности. Вот несколько ключевых моментов о зеркальном отражении:

  1. Отраженный луч всегда находится в плоскости, проходящей через падающий луч, и перпендикулярно отражающей поверхности, которая восстанавливается в точке падения.
  2. Угол падения равен углу отражения светового луча.
  3. Характеристики отраженного луча пропорциональны поляризации луча и углу падения. Кроме того, на индикатор влияют характеристики двух сред.

Законы отражения света и история их открытия

В случае зеркального отражения углы падения и отражения всегда одинаковы.

В этом случае показатели преломления зависят от свойств плоскости и характеристик света. Это отражение можно найти везде, где есть гладкие поверхности. Но для разных сред условия и принципы могут меняться.

Полное внутреннее отражение

Типично для звуковых и электромагнитных волн. Это происходит там, где встречаются две среды. В этом случае волны должны падать из среды с меньшей скоростью распространения. Что касается света, то можно сказать, что показатели преломления в этом случае значительно увеличиваются.

Законы отражения света и история их открытия

Полное внутреннее отражение характерно для водной поверхности.

Угол падения светового луча влияет на угол преломления. С увеличением его значения интенсивность отраженных лучей увеличивается, а интенсивность преломленных лучей уменьшается. При достижении определенного критического значения показатели преломления уменьшаются до нуля, что приводит к полному отражению лучей.

Критический угол рассчитывается индивидуально для разных сред.

Диффузное отражение света

Этот вариант отличается тем, что при попадании на неровную поверхность лучи отражаются в разные стороны. Отраженный свет просто рассеивается, поэтому вы не можете увидеть свое отражение на неровной или непрозрачной плоскости. Явление диффузии лучей наблюдается, когда неровности равны длине волны или превышают ее.

При этом одна и та же плоскость может диффузно отражать свет или ультрафиолетовое излучение, но при этом хорошо отражать инфракрасный спектр. Все зависит от характеристик волн и свойств поверхности.

Законы отражения света и история их открытия

Диффузное отражение хаотично из-за неровностей поверхности.

Обратное отражение

Это явление наблюдается, когда лучи, волны или другие частицы отражаются назад, то есть к источнику. Это свойство можно использовать в астрономии, естествознании, медицине, фотографии и других областях. Благодаря системе выпуклых линз в телескопах можно видеть свет звезд, невидимый невооруженным глазом.

Законы отражения света и история их открытия

Обратным отражением можно управлять за счет сферической формы отражающей поверхности.

важно создать определенные условия для возврата света к источнику, чаще это достигается за счет оптики и направления луча лучей. Например, этот принцип используется в ультразвуковых исследованиях, благодаря отраженным ультразвуковым волнам на мониторе выводится изображение исследуемого органа.

История открытия законов отражения

Это явление известно давно. Впервые об отражении света упоминается в произведении «Катоптрика», датируемом 200 г до н.э и написанном древнегреческим ученым Евклидом. Первые опыты были простыми, поэтому на тот момент не появилось никаких теоретических оснований, но именно он открыл это явление. В этом случае для зеркальных поверхностей использовался принцип Ферма.

Формулы Френеля

Огюст Френель был французским физиком, который разработал ряд формул, широко используемых по сей день. Они используются для расчета интенсивности и амплитуды отраженных и преломленных электромагнитных волн. Кроме того, они должны проходить через резкую границу между двумя средами с разными значениями преломления.

Все явления, которые соответствуют формулам французского физика, называются отражением Френеля. Но следует помнить, что все полученные закономерности верны только тогда, когда средние изотропны и граница между ними четкая. В этом случае угол падения всегда равен углу отражения, а величина преломления определяется по закону Снеллиуса.

важно, что когда свет падает на плоскую поверхность, может быть два типа поляризации:

  1. p-поляризация характеризуется тем, что вектор напряженности электромагнитного поля лежит в плоскости падения.
  2. поляризация s отличается от первого типа тем, что вектор интенсивности электромагнитных волн перпендикулярен плоскости, в которой лежат как падающие, так и отраженные лучи.

Законы отражения света и история их открытия

Френель вывел целый ряд формул, которые позволяют выполнять все необходимые вычисления.

Формулы для ситуаций с разной поляризацией разные. Это связано с тем, что поляризация влияет на характеристики луча и по-разному отражается. Когда свет падает под определенным углом, отраженный луч может быть полностью поляризован. Этот угол называется углом Брюстера, он зависит от преломляющих характеристик среды на границе раздела.

Говоря о которых! Отраженный луч всегда поляризован, даже если падающий свет не поляризован.

Принцип Гюйгенса

Гюйгенс — голландский физик, которому удалось вывести принципы, позволяющие описывать волны любой природы. Именно с его помощью часто демонстрируются как закон отражения, так и закон преломления света.

Законы отражения света и история их открытия

Это простейшее схематическое изображение принципа Гюйгенса.

В данном случае под светом понимается плоская волна, то есть все поверхности волны плоские. В этом случае поверхность волны представляет собой набор точек с колебаниями в одной фазе.

Формулировка такова: каждая точка, до которой доходит возмущение, становится источником сферических волн.

В видео закон физики 8-го класса объясняется очень простыми словами с помощью графики и анимации.

Сдвиг Федорова

его еще называют эффектом Федорова-Амбера. В этом случае происходит смещение светового пучка с полным внутренним отражением. В этом случае смещение незначительное, оно всегда меньше длины волны. Из-за этого смещения отраженный луч не лежит в той же плоскости, что и падающий, что противоречит закону отражения света.

Диплом о научном открытии был вручен Ф.И. Федорову в 1980 году.

Боковое смещение лучей было теоретически доказано советскими учеными в 1955 году благодаря математическим расчетам. Что касается экспериментального подтверждения этого эффекта, то вскоре его сделал французский физик Эмбер.

Использование закона на практике

Законы отражения света и история их открытия

Примеры отражения света вездесущи.

Рассматриваемый закон гораздо более распространен, чем кажется. Этот принцип широко используется в различных сферах:

  1. Зеркало — самый простой пример. Это гладкая поверхность, хорошо отражающая свет и другие виды излучения. Используются как плоские версии, так и элементы других форм, например, сферические поверхности позволяют отталкивать предметы, что делает их незаменимыми в качестве зеркал заднего вида в автомобиле.
  2. Различные оптические устройства также работают в соответствии с обсуждаемыми принципами. Это включает в себя все, от очков, которые можно найти повсюду, до мощных телескопов с выпуклыми линзами или микроскопов, используемых в медицине и биологии.
  3. Ультразвуковые аппараты также используют этот принцип. Ультразвуковое оборудование позволяет проводить точные исследования. Рентгеновские лучи распространяются таким же образом.
  4. Микроволновые печи — еще один пример практического применения этого закона. Также сюда входит все оборудование, использующее инфракрасное излучение (например, приборы ночного видения).
  5. Вогнутые зеркала позволяют улучшить характеристики фонарей и светильников. В этом случае мощность лампочки может быть намного ниже, чем без использования зеркального элемента.

Говоря о которых! Через отражение света мы видим луну и звезды.

Закон отражения света объясняет многие природные явления, а знание его характеристик позволило нам создать оборудование, которое широко используется в наше время.

Оцените статью
Добавить комментарий